Search results for "nuclear isomers"

showing 3 items of 3 documents

Identification of a dipole band above the Iπ = 31/2- isomeric state in 189Pb

2015

A dipole band of six transitions built upon a firmly established I π = 31/2− isomeric state has been identified in 189Pb using recoil-isomer tagging. This is the lightest odd-mass Pb nucleus in which a dipole band is known. The dipole nature of the new transitions has been confirmed through angular-intensity arguments. The evolution of the excitation energy and the aligned-angular momentum of the states in the new dipole band are compared with those of dipole bands in heavier, odd-mass lead isotopes. This comparison suggests that the new band in 189Pb is based upon a π[s−2 1/2h9/2i13/2]11− ⊗ ν[i −1 13/2+ ]13/2+ configuration. However, the increased aligned-angular momentum in 189Pb may sugg…

dipole bandsnuclear isomerslead isotopesPhysics::Atomic PhysicsNuclear Experimentexcited states
researchProduct

Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in 254Rf

2015

International audience; Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) mu s have been discovered in the heavy (254)Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K-pi = 8(-), nu(2)(7/2(+)[624]; 9/2(-)[734]) two-quasineutron and the K-pi = 16(+), 8(-)nu(2)(7/2(+)[624]; 9/2(-)[734] circle times 8(-)pi(2) (7/2(-)[514]; 9/2(+)[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomer…

[PHYS]Physics [physics]General PhysicsNO-254nuclear isomersEngineeringNUCLEISTATESPhysical Sciencesrutherfordium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]FM-250Mathematical Sciences
researchProduct

Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N=50$

2022

Direct mass measurements of neutron-deficient nuclides around the N=50 shell closure below $^{100}$Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of $^{124}$Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10−7 using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of $^{98}$Cd and $^{97}$Rh. A new QEC=5437±67 keV was obtained for $^{98}$Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions (0+…

nuclear isomersNuclear and High Energy PhysicsMultiple-reflection time-of-flight massNuclear shell structuremultiple-reflection time-of-flight mass[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]N = 50 isotonesFOS: Physical sciencesGamow-Teller transition?s strength114 Physical sciencesSpectrometerexotic nucleiGamow-Teller transition's strengthnuclear shell structureNuclear isomersspectrometerN=50 isotonesNuclear Experiment (nucl-ex)ydinfysiikkaNuclear ExperimentExotic nuclei
researchProduct